首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2242篇
  免费   81篇
  国内免费   1篇
化学   1282篇
晶体学   36篇
力学   76篇
数学   147篇
物理学   783篇
  2023年   26篇
  2022年   30篇
  2021年   41篇
  2020年   55篇
  2019年   51篇
  2018年   53篇
  2017年   40篇
  2016年   92篇
  2015年   53篇
  2014年   75篇
  2013年   146篇
  2012年   157篇
  2011年   146篇
  2010年   97篇
  2009年   73篇
  2008年   126篇
  2007年   116篇
  2006年   97篇
  2005年   108篇
  2004年   77篇
  2003年   50篇
  2002年   45篇
  2001年   36篇
  2000年   23篇
  1999年   17篇
  1998年   13篇
  1997年   12篇
  1996年   24篇
  1995年   32篇
  1994年   20篇
  1993年   28篇
  1992年   18篇
  1991年   19篇
  1989年   18篇
  1988年   19篇
  1987年   13篇
  1986年   17篇
  1985年   37篇
  1984年   19篇
  1983年   15篇
  1982年   28篇
  1981年   25篇
  1980年   10篇
  1979年   10篇
  1978年   10篇
  1977年   10篇
  1975年   9篇
  1974年   14篇
  1973年   10篇
  1955年   12篇
排序方式: 共有2324条查询结果,搜索用时 15 毫秒
11.
The photovoltaic performance of quantum-dot solar cells strongly depends on the charge-carrier relaxation and recombination processes, which need to be modulated in a favorable way to obtain maximum efficiency. Recently, significant efforts have been devoted to investigate the carrier dynamics of nanocrystal sensitizers, both in solution and deposited on TiO2 photoanodes, with the aim to correlate the excitonics with solar-energy conversion efficiency. This Minireview summarizes some proof of the concepts that efficiency can be directly correlated to the exciton dynamics of quantum-dot solar cells. The presented findings are based on CdSeS alloy, CdSe/CdS core/shell, Au/CdSe nanohybrids, and Mn-doped CdZnSSe nanocrystals, where the favourable excitonic processes are optimized to enhance the efficiency. Future prospects and limitations are addressed as well.  相似文献   
12.
The microscopic Polymer Reference Interaction Site Model theory is employed to study, for the first time, the effective interactions, spatial organization, and miscibility of dilute spherical nanoparticles in non‐microphase separating, chemically heterogeneous, compositionally symmetric AB multiblock copolymer melts of varying monomer sequence or architecture. The dependence of nanoparticle wettability on copolymer sequence and chemistry results in interparticle potentials‐of‐mean force that are qualitatively different from homopolymers. An important prediction is the ability to improve nanoparticle dispersion via judicious choice of block length and monomer adsorption‐strengths which control both local surface segregation and chain connectivity induced packing constraints and frustration. The degree of dispersion also depends strongly on nanoparticle diameter relative to the block contour length. Small particles in copolymers with longer block lengths experience a more homopolymer‐like environment which renders them relatively insensitive to copolymer chemical heterogeneity and hinders dispersion. Larger particles (sufficiently larger than the monomer diameter) in copolymers of relatively short block lengths provide better dispersion than either a homopolymer or random copolymer. The theory also predicts a novel widening of the miscibility window for large particles upon increasing the overall molecular weight of copolymers composed of relatively long blocks. The influence of a positive chi‐parameter in the pure copolymer melt is briefly studied. Quantitative application to fullerenes in specific copolymers of experimental interest is performed, and miscibility predictions are made. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1098–1111  相似文献   
13.
Journal of Inclusion Phenomena and Macrocyclic Chemistry - A correction to this paper has been published: https://doi.org/10.1007/s10847-021-01060-y  相似文献   
14.
A simple, efficient, and facile heterogeneous multi-walled carbon nanotubes-zirconia nanocomposite (MWCNTs-ZrO2) has been synthesized using natural feedstock coconut juice (água-de-coco do Ceará). The synthesized catalyst was characterized by Fourier transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy, and X-ray photoelectron spectroscopy analysis. The heterogeneous nanocomposite has been used for one-pot synthesis of various N-heterocyclic compounds like pyrazoles, 1,2-disubstituted benzimidazoles, 2-arylbenzazoles, and 2,3-dihydroquinazolin-4(1H)-ones under green reaction medium at room temperature. This novel method has several advantages, such as short reaction time, simple work-up, excellent yield, and green reaction conditions. The catalyst was recycled up to four times without significant loss in catalytic activity.  相似文献   
15.
Sulfonated polytriazoles have drawn a great attention as high performance polymers and their good film forming ability. In the present study, a phosphorus containing new diazide monomer namely, bis-[4-(4′-aminophenoxy)phenyl]phenylphosphine was synthesized and accordingly, a series of phosphorus containing sulfonated polytriazoles (PTPBSH-XX) was synthesized by reacting equimolar amount of this diazide monomer (PAZ) in combination with another sulfonated diazide monomer (DSAZ) and a terminal bis-alkyne (BPALK) by the Cu (I) catalyzed azide–alkyne click polymerization. The polymers were characterized by nuclear magnetic resonance (1H, 13C, 31P NMR) and Fourier transform infrared spectroscopic techniques. The sulfonic acid content of the copolymers also determined from the different integral values obtained from the 1H NMR signals. The small-angle X-ray scattering results unfolded the well-separated dispersion of the hydrophilic and hydrophobic domains of the polymers. As a whole, the copolymer membranes displayed sufficient thermal, mechanical, and oxidative stabilities high with high proton conductivity and low water uptake that are essential for proton exchange membrane applications. The copolymers exhibited oxidative stability in the range of 15–24 h and had proton conductivity values were found as high as 38–110 mS cm−1 at 80 °C in completely hydrated condition. Among the all copolytriazoles, PTPBSH-90 (BPALK:DSAZ:PAZ = 100:90:10) having IECW = 2.44 mequiv g−1, showed proton conductivity as high as 119 mS cm−1 at 90 °C with an activation energy of 10.40 kJ mol−1 for the proton conduction. © 2020 Wiley Periodicals, Inc. J. Polym. Sci. 2020 , 58, 263–279  相似文献   
16.
To circumvent costly fluorescent labeling, five nonconventional, multifunctional, intrinsically fluorescent aliphatic terpolymers ( 1 – 5 ) have been synthesized by C−C/C−N-coupled, solution polymerization of two non-emissive monomers with protrusions of fluorophore monomers generated in situ. These scalable terpolymers were suitable for sensing and high-performance exclusion of CuII, logic function, and bioimaging. The structures of the terpolymers, in situ attachment of fluorescent monomers, aggregation-induced enhanced emission, bioimaging ability, and super adsorption were investigated by 1H and 13C NMR, EPR, FTIR, X-ray photoelectron, UV/Vis, and atomic absorption spectroscopy, thermogravimetric analysis, high-resolution transmission electron microscopy, dynamic light scattering, solid-state fluorescence, fluorescence imaging, and fluorescence lifetime measurements, as well as by isotherm, kinetics, and thermodynamic studies. The geometries and electronic structures of the fluorophores and the absorption and emission properties of the terpolymers were examined by DFT, time-dependent DFT, and natural transition orbital analyses. For 1 , 2 , and 5 , the limits of detection were determined to be 1.03×10−7, 1.65×10−7, and 1.77×10−7 m , respectively, and the maximum adsorption capacities are 1575.21, 1433.70, and 1472.21 mg g−1, respectively.  相似文献   
17.
This study encompasses the synthesis and characterization of organotin(IV) derivatives of non-steroidal anti-inflammatory drug ibuprofen (IBF), viz. [(Me3Sn)(IBF)] ( 1 ), [(Bu3Sn)(IBF)] ( 2 ), [Ph3Sn(IBF)] ( 3 ), {[Me2Sn(IBF)]2O}2 ( 4 ) and [Bu2Sn(IBF)2] ( 5 ). The crystal structure of complex 3 , [Ph3Sn(IBF)], indicates a highly distorted tetrahedral (td) geometry with anisobidentate mode of coordination of the carboxylate group with tin atom, and a similar structure has been proposed for other two triorganotin(IV) derivatives. Moreover, the DFT (density functional theory) calculation and other studies have verified a dimer distannoxane type of structure for complex 4 , {[Me2Sn(IBF)]2O}2. Complex 5 has been found to exhibit a highly distorted octahedral geometry around the tin atom. To investigate the DNA binding profile of the synthesized complexes, viscosity measurement, UV–vis and fluorescence titrations were performed, which revealed an intercalative type of binding with DNA for IBF and complex 5 and external binding in case of the complexes 1 and 2 ; complexes 3 and 4 could not be studied owing to their insufficient solubility in tris buffer. Plasmid DNA fragmentation studies of IBF and complexes 1 , 2 and 5 indicate that they cleaved the pBR322 plasmid potentially. Further, the drugs IBF {2-[4-(2-methylpropyl)phenyl]propanoic acid}, MESNA (sodium 2-mercaptoethane-sulfonate), warfarin [2H-1-benzopyran-2-one,4-hydroxy-3-(3-oxo-1-phenylbutyl)], sulindac (2-{5-fluoro-1-[(4-methanesulfinylphenyl) methylidene]-2-methyl-1H-inden-3-yl}acetic acid) and their corresponding organotin(IV) complexes 1–19 (complexes 6–19 were synthesized/reported previously) were screened in vitro for cytotoxicity against human cancer cell lines viz. DU145 (prostate cancer), HCT-15 (colon adenocarcinoma), Caco-2 (colorectal adenocarcinoma), MCF-7 (mammary cancer), LNCaP (androgen-sensitive prostate adenocarcinoma) and HeLa (cervical cancer), through MTT reduction assay and the cause of cell death was investigated through acridine orange/ethidium bromide staining of cells and DNA fragmentation assay. The probable structure–cytotoxicity relationship is also discussed. The major role of apoptosis along with small necrosis was also validated by flow cytometry assay using annexin V–fluorescein isothiocyanate and propidium iodide analysis.  相似文献   
18.
Treatment of [Cp*RuCl2]2, 1 , [(COD)IrCl]2, 2 or [(p-cymene)RuCl2]2, 3 (Cp*=η5-C5Me5, COD= 1,5-cyclooctadiene and p-cymene=η6-iPrC6H4Me) with heterocyclic borate ligands [Na[(H3B)L], L1 and L2 ( L1 : L=amt, L2 : L=mp; amt=2-amino-5-mercapto-1,3,4-thiadiazole, mp=2-mercaptopyridine) led to the formation of borate complexes having uncommon coordination. For example, complexes 1 and 2 on reaction with L1 and L2 afforded dihydridoborate species [LAM(μ-H)2BHL] 4 – 6 ( 4 : LA=Cp*, M=Ru, L=amt; 5 : LA=Cp*, M=Ru, L=mp; 6 : LA=COD, M=Ir, L=mp). On the other hand, treatment of 3 with L2 yielded cis- and trans-bis(dihydridoborate) species, [Ru{(μ-H)2BH(mp)}2], cis- 7 and trans- 7 . The isolation and structural characterization of fac- and mer-[Ru{(μ-H)2BH(mp)}{(μ-H)BH(mp)2}], 8 from the same reaction offered an insight into the behaviour of these dihydridoborate species in solution. Fascinatingly, despite having reduced natural charges on Ru centres both at cis-and trans- 7 , they underwent hydroboration reaction with alkynes that yielded both Markovnikov and anti-Markovnikov addition products, 10 a – d .  相似文献   
19.
The [FeIV(O)(Me3NTB)]2+ (Me3NTB=tris[(1-methyl-benzimidazol-2-yl)methyl]amine) complex 1 has been shown by Mössbauer spectroscopy to have an S=1 ground state at 4 K, but is proposed to become an S=2 trigonal-bipyramidal species at higher temperatures based on a DFT model to rationalize its very high C−H bond-cleavage reactivity. In this work, 1H NMR spectroscopy was used to determine that 1 does not have C3-symmetry in solution and is not an S=2 species. Our results show that 1 is unique among nonheme FeIV=O complexes in retaining its S=1 spin state and high reactivity at 193 K, providing evidence that S=1 FeIV=O complexes can be as reactive as their S=2 counterparts. This result emphasizes the need to identify factors besides the ground spin state of the FeIV=O center to rationalize nonheme oxoiron(IV) reactivity.  相似文献   
20.
A zinc containing metal–organic gel (Zn-MOG) with embedded free ions, which exhibits self-healing properties, has been synthesized for application in supercapacitors. The activated carbon-based flexible supercapacitor device with the MOG electrolyte has a broad potential window of 2.1 V, with high retention of specific capacitance compared to the traditional polyvinyl alcohol (PVA)-based gel. The Zn-MOG does not require an additional electrolyte. The sodium and sulphate ions embedded in the MOG are sufficient enough for the charge storage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号